Author Affiliations
Abstract
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
2 MIT Microphotonics Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Reduction of modulator energy consumption to 10 fJ/bit is essential for the sustainable development of communication systems. Lumped modulators might be a viable solution if instructed by a complete theory system. Here, we present a complete analytical electro-optic response theory, energy consumption analysis, and eye diagrams on absolute scales for lumped modulators. Consequently the speed limitation is understood and alleviated by single-drive configuration, and comprehensive knowledge into the energy dependence on structural parameters significantly reduces energy consumption. The results show that silicon modulation energy as low as 80.8 and 21.5 fJ/bit can be achieved at 28 Gbd under 50 and 10 Ω impedance drivers, respectively. A 50 Gbd modulation is also shown to be possible. The analytical models can be extended to lumped modulators on other material platforms and offer a promising solution to the current challenges of modulation energy reduction.
Modulators Optical switching devices Integrated optics devices 
Photonics Research
2017, 5(2): 02000134
Author Affiliations
Abstract
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
We review current silicon photonic devices and their performance in connection with energy consumption. Four critical issues are identified to lower energy consumption in devices and systems: reducing the influence of the thermo-optic effect, increasing the wall-plug efficiency of lasers on silicon, optimizing energy performance of modulators, and enhancing the sensitivity of photodetectors. Major conclusions are (1) Mach–Zehnder interferometer-based devices can achieve athermal performance without any extra energy consumption while microrings do not have an efficient passive athermal solution; (2) while direct bonded III–V-based Si lasers can meet system power requirement for now, hetero-epitaxial grown III–V quantum dot lasers are competitive and may be a better option for the future; (3) resonant modulators, especially coupling modulators, are promising for low-energy consumption operation even when the power to stabilize their operation is included; (4) benefiting from high sensitivity and low cost, Ge/Si avalanche photodiode is the most promising photodetector and can be used to effectively reduce the optical link power budget. These analyses and solutions will contribute to further lowering energy consumption to meet aggressive energy demands in future systems.
Energy transfer Energy transfer Integrated optics devices Integrated optics devices Semiconductor lasers Semiconductor lasers Coupled resonators Coupled resonators Avalanche photodiodes (APDs) Avalanche photodiodes (APDs) 
Photonics Research
2015, 3(5): 05000B28
Author Affiliations
Abstract
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
2 Xi’an Flight Automatic Control Research Institute, Aviation Industries of China (AVIC), Xi’an 710065, China
A novel athermal scheme utilizing resonance splitting of a dual-ring structure is proposed. Detailed design and simulation are presented, and a proof of concept structure is optimized to demonstrate an athermal resonator with resonance wavelength variation lower than 5 pm∕K within 30 K temperature range.
Integrated optics devices Wavelength filtering devices Coupled resonators 
Photonics Research
2014, 2(2): 02000071

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!